Harmonic morphisms of warped product type from Einstein manifolds
نویسنده
چکیده
Weitzenböck type identities for harmonic morphisms of warped product type are developed which lead to some necessary conditions for their existence. These necessary conditions are further studied to obtain many nonexistence results for harmonic morphisms of warped product type from Einstein manifolds. Mathematics Subject Classification (2000). 58E20, 53C20, 53C25.
منابع مشابه
Warped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملHarmonic Morphisms with 1-dim Fibres on 4-dim Einstein Manifolds
Harmonic morphisms are smooth maps between Riemannian manifolds which preserve Laplace's equation. They are characterised as harmonic maps which are horizontally weakly conformal 14, 20]. R.L. Bryant 7] proved that there are precisely two types of harmonic morphisms with one-dimensional bres which can be deened on a constant curvature space of dimension at least four. Here we prove that, on an ...
متن کاملConformal Actions and Harmonic Morphisms
We give necessary and suucient conditions for a conformal foliation locally generated by conformal vector elds to produce harmonic morphisms. Natural constructions of harmonic maps and morphisms are thus obtained. Also we obtain reducibility results for harmonic morphisms induced by (innnitesimal) conformal actions on Einstein manifolds.
متن کاملBiharmonic Maps between Doubly Warped Product Manifolds
In this paper biharmonic maps between doubly warped product manifolds are studied. We show that the inclusion maps of Riemannian manifolds B and F into the doubly warped product f B ×b F can not be proper biharmonic maps. Also we analyze the conditions for the biharmonicity of projections f B ×b F → B and f B ×b F → F , respectively. Some characterizations for non-harmonic biharmonic maps are g...
متن کاملHarmonic Morphisms with One-dimensional Fibres on Einstein Manifolds
We prove that, from an Einstein manifold of dimension greater than or equal to five, there are just two types of harmonic morphism with one-dimensional fibres. This generalizes a result of R.L. Bryant who obtained the same conclusion under the assumption that the domain has constant curvature.
متن کامل